Komparasi Kinerja Algoritma Random Forest dan C4.5 untuk Klasifikasi Harga Mobil
DOI:
https://doi.org/10.58369/biit.v3i1.95Keywords:
Random Forest, C4.5, Klasifikasi Harga Mobil, Algoritma Pohon Keputusan, Analisis KomparatifAbstract
Determining car prices is a crucial aspect of the automotive industry that requires accurate data analysis for strategic decision-making. This study aims to compare the performance of the Random Forest and C4.5 algorithms in classifying car prices based on specific features, such as technical specifications, production year, and market conditions. The dataset used in this study consists of [mention the size and source of the dataset if available], analyzed using a cross-validation approach to ensure the accuracy of the results.
The performance of both algorithms is evaluated based on several metrics, including accuracy, precision, recall, and F1-score. The results show that the Random Forest algorithm consistently outperforms the C4.5 algorithm across most evaluation metrics, achieving an accuracy of [best Random Forest accuracy] compared to [best C4.5 accuracy]. These findings indicate that the Random Forest algorithm is more effective in handling multivariate data complexity and providing more reliable predictions.
The conclusions of this study highlight the potential of Random Forest as the primary method for car price classification, especially in scenarios requiring high accuracy levels. This research also contributes to a comparative understanding of decision-tree-based algorithms for applications in the automotive industry and opens opportunities for further research into developing more adaptive and efficient models.
References
T. S. W. T. Plus, “Indonesia Jumlah Pelanggan Seluler,” 2023. https://www.ceicdata.com/id/indicator/indonesia/number-of-subscriber-mobile.
M. Syaharani, “10 Negara Dengan Pengguna Smartphone Terbanyak Di Dunia, Indonesia Masuk Daftar!,” 2023. https://goodstats.id/article/10-negara-dengan-pengguna-smartphone-terbanyak-di-dunia-indonesia-masuk-daftar-fDv25.
Mohamad Alparizi Sahadan, Prof. Dr. Ing. Parabelem T. D. Rompas, MT, and Cindy P. C. Munaiseche, ST, M. Eng, “Analisis Kepuasan Pelanggan Menggunakan Metode Algoritma C4.5 Berdasarkan E-Survey Kejaksaan Negeri Minahasa,” JOINTER J. Informatics Eng., vol. 4, no. 01, pp. 1–13, 2023, doi: 10.53682/jointer.v4i01.137.
N. Azwanti and E. Elisa, “Analisa Kepuasan Konsumen Menggunakan Algoritma C4.5,” Pros. Semin. Nas. Ilmu Sos. dan Teknol., no. 3, pp. 126–131, 2020.
D. S. P. Eko Setia Budi, Abdul Rahman Kadafi, Yasdi Kharismawan, Randi Fadillah, “Analisa Kepuasan Pelanggan Terhadap Layanan Aplikasi E-Commerce Menggunakan Algoritma C4.5,” vol. 4, no. 6, pp. 530–542, 2024.
R. N. Ramadhon, A. Ogi, A. P. Agung, R. Putra, S. S. Febrihartina, and U. Firdaus, “Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank,” Karimah Tauhid, vol. 3, no. 2, pp. 1860–1874, 2024, doi: 10.30997/karimahtauhid.v3i2.11952.
D. Telaumbanua and I. Kurniawati, “Penerapan Algoritma C4.5 Untuk Klasifikasi Kepuasan Pelanggan Pada Jasa Layanan Pengiriman,” JoMMiT J. Multi Media dan IT, vol. 6, no. 1, 2022, doi: 10.46961/jommit.v6i1.524.
J. Endardi, “Upaya Peningkatan Loyalitas Pelanggan Pada PT. Jayamandiri Gemasejati Cabang Bojong Gede Menggunakan Metode Algoritma C4.5 dan MetodeCSI,” vol. 3, no. 2, pp. 47–53, 2022.
A. Karim, S. Esabella, K. Kusmanto, M. Hidayatullah, and S. Suryadi, “Penerapan Data Mining Untuk Pengelompokan Terhadap Kualitas Kinerja Karyawan Dengan Menggunakan Algoritma K-Medoids Clustering,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1001, 2024, doi: 10.30865/mib.v8i2.7445.
B. Bangun and A. K. Karim, “Pengembalian Data Yang Hilang Pada Dataset Dengan Menggunakan Algoritma K-Nearest Neighbor Imputation Data Mining,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1706, 2024, doi: 10.30865/mib.v8i3.8014.
I. Nasution, A. P. Windarto, and M. Fauzan, “Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi,” vol. 2, no. 2, pp. 76–83, 2020.
S. T. Bangsa and S. Utara, “Implementasi Data Mining Dalam Mengelompokkan Jumlah Penduduk Miskin Berdasarkan Provinsi Menggunakan Algoritma,” vol. 2, no. 2, pp. 125–132.
N. T. Luchia, H. Handayani, and F. S. Hamdi, “Comparison of K-Means and K-Medoids on Poor Data Clustering in Indonesia Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” vol. 2, no. October, pp. 35–41, 2022.
A. P. Wibawa, M. Guntur, A. Purnama, M. Fathony Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, pp. 134–138, 2018.
P. P. Haryoto, H. Okprana, and I. S. Saragih, “Algoritma C4.5 Dalam Data Mining Untuk Menentukan Klasifikasi Penerimaan Calon Mahasiswa Baru,” TIN Terap. Inform. Nusant., vol. 2, no. 5, pp. 358–364, 2021, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin/article/view/919.
Nagesh Singh Chauhan, “Decision Tree Algorithm, Explained,” 2022. https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html.
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.
K. Aidi Saputra, J. Tata Hardinata, M. Ridwan Lubis, S. Retno Andani, and I. Syahputra Saragih, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Algoritma C4.5 Dalam Penerapan Tingkat Kepuasan Siswa Terhadap Media Pembelajaran Online,” Media Online), vol. 1, no. 3, pp. 113–118, 2020, [Online]. Available: https://djournals.com/klik.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).








