Implementasi Deteksi Objek Pada Jalan Rusak Menggunakan Metode YOLOv8

DOI:

https://doi.org/10.58369/biit.v3i1.76

Keywords:

Damaged Roads, Object Detection, Roads, YOLOv8

Abstract

Roads are an essential transportation infrastructure that connects one place to another. Roads also have a significant impact on the development of a region because land transportation relies on roads to transport essential goods needed by the community, such as clothing and food. The dataset used consists of 26,336 images, divided into 80% training data, 10% validation data, and 10% test data. This software development aims to detect damaged road types using the YOLOv8 algorithm. The testing results showed that the best accuracy was achieved using 100 epochs, with an accuracy of 43.98%.

References

​​[1] A. N. Utomo and N. Lestari, “APLIKASI DETEKSI KERUSAKAN JALAN RAYA MENGGUNAKAN ALGORITMA K-NN (K-NEAREST NEIGHBOUR) ROAD DETECTION APPLICATION USING K-NN ALGORITHM (K-NEAREST NEIGHBOUR),” vol. 10, no. 1, 2021.

M. Farhan, “Analisa Faktor Penyebab Kerusakan Jalan (Studi Kasus : Ruas Jalan Lintas Pantai Timur Sumatera),” 2022.

​[3] BPS, “Panjang Jalan Menurut Kondisi Jalan (km), 2020-2022.”

Kementerian Pekerjaan Umum dan Perumahan Rakyat, “Kondisi Permukaan Jalan Nasional.”

M. Fadhilur Rahman, “Deteksi Sampah pada Real-time Video Menggunakan Metode Faster R-CNN,” 2020.

​[6] J. Sahertian and A. Sanjaya, “DETEKSI BUAH PADA POHON MENGGUNAKAN METODE SVM DAN FITUR TEKSTUR,” 2017.

J. H. Sri Wisna et al., “Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan,” vol. 09, no. 01, pp. 8–14, 2020.

Kristiawan et al., “Deteksi Buah Menggunakan Supervised Learning dan Ekstraksi Fitur untuk Pemeriksa Harga,” 2020.

​[9] A. P. Putra et al, “PENGUJIAN APLIKASI POINT OF SALE BERBASIS WEB MENGGUNAKAN BLACK BOX TESTING,”2020.

K. Shianto et al., “Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN,”2019.

D. I. Mulyana and M. Zikri, “Optimasi Mendeteksi Klasifikasi Citra Digital Logo Mobil Indonesia Dengan Metode Single Shot Multibox Detector,” 2022.

​[12] R. H. Pramestya, “Deteksi Dan Klasifikasi Kerusakan Jalan Aspal Menggunakan Metode YOLO Berbasis Citra Digital,” 2018.

D. Nafis Alfarizi et al., “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” 2023.

A. E. Minarno, “Texture Feature Extraction Using Co-Occurrence Matrices of Sub-Band Image For Batik Image Classification,” 2014.

D. Pestana et al, “A Full Featured Configurable Accelerator for Object Detection with YOLO,” 2021.

Downloads

Published

2024-10-05

Issue

Section

Articles