Implementasi Deteksi Objek Pada Jalan Rusak Menggunakan Metode YOLOv8
DOI:
https://doi.org/10.58369/biit.v3i1.76Keywords:
Damaged Roads, Object Detection, Roads, YOLOv8Abstract
Roads are an essential transportation infrastructure that connects one place to another. Roads also have a significant impact on the development of a region because land transportation relies on roads to transport essential goods needed by the community, such as clothing and food. The dataset used consists of 26,336 images, divided into 80% training data, 10% validation data, and 10% test data. This software development aims to detect damaged road types using the YOLOv8 algorithm. The testing results showed that the best accuracy was achieved using 100 epochs, with an accuracy of 43.98%.
References
[1] A. N. Utomo and N. Lestari, “APLIKASI DETEKSI KERUSAKAN JALAN RAYA MENGGUNAKAN ALGORITMA K-NN (K-NEAREST NEIGHBOUR) ROAD DETECTION APPLICATION USING K-NN ALGORITHM (K-NEAREST NEIGHBOUR),” vol. 10, no. 1, 2021.
M. Farhan, “Analisa Faktor Penyebab Kerusakan Jalan (Studi Kasus : Ruas Jalan Lintas Pantai Timur Sumatera),” 2022.
[3] BPS, “Panjang Jalan Menurut Kondisi Jalan (km), 2020-2022.”
Kementerian Pekerjaan Umum dan Perumahan Rakyat, “Kondisi Permukaan Jalan Nasional.”
M. Fadhilur Rahman, “Deteksi Sampah pada Real-time Video Menggunakan Metode Faster R-CNN,” 2020.
[6] J. Sahertian and A. Sanjaya, “DETEKSI BUAH PADA POHON MENGGUNAKAN METODE SVM DAN FITUR TEKSTUR,” 2017.
J. H. Sri Wisna et al., “Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan,” vol. 09, no. 01, pp. 8–14, 2020.
Kristiawan et al., “Deteksi Buah Menggunakan Supervised Learning dan Ekstraksi Fitur untuk Pemeriksa Harga,” 2020.
[9] A. P. Putra et al, “PENGUJIAN APLIKASI POINT OF SALE BERBASIS WEB MENGGUNAKAN BLACK BOX TESTING,”2020.
K. Shianto et al., “Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN,”2019.
D. I. Mulyana and M. Zikri, “Optimasi Mendeteksi Klasifikasi Citra Digital Logo Mobil Indonesia Dengan Metode Single Shot Multibox Detector,” 2022.
[12] R. H. Pramestya, “Deteksi Dan Klasifikasi Kerusakan Jalan Aspal Menggunakan Metode YOLO Berbasis Citra Digital,” 2018.
D. Nafis Alfarizi et al., “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” 2023.
A. E. Minarno, “Texture Feature Extraction Using Co-Occurrence Matrices of Sub-Band Image For Batik Image Classification,” 2014.
D. Pestana et al, “A Full Featured Configurable Accelerator for Object Detection with YOLO,” 2021.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).








